
Algorithm Acceleration on FPGAs using OpenCL
Suneth Samarasinghe

dept. of Computer Engineering
University of Peradeniya

Sri Lanka
imsuneth@gmail.com

Pubudu Premathilaka
dept. of Computer Engineering

University of Peradeniya
Sri Lanka

pubudu.premathilaka@eng.pdn.ac.lk

Wishma Herath
dept. of Computer Engineering

University of Peradeniya
Sri Lanka

wisheslakshan@gmail.com

Hasindu Gamaarachchi
dept. of Computer Science

University of New South Wales
Australia

hasindu@unsw.edu.au

Roshan Ragel
dept. of Computer Engineering

University of Peradeniya
Sri Lanka

roshanr@eng.pdn.ac.lk

Abstract—During the past couple of years, GPUs have been
frequently utilized in supercomputers to accelerate various types
of data processing. However, the high-power usage of these
devices remains a bottleneck in deploying large supercomputers.
For this reason, Field-Programmable Gate Arrays (FPGA) are
a promising alternative to GPUs specifically because of their
relatively low power consumption. Typically, FPGA program-
ming requires skills in complex hardware description (HDL).
Currently, one of the growing trends in the FPGA domain
is high-level synthesis (HLS) frameworks like OpenCL. HLS
allows writing programs in high-level languages such as C.
Then, the programs are converted by underlying layers to run
on heterogeneous systems consisting of CPU, GPU, and FPGA.
Several studies have shown that OpenCL with Altera extensions
greatly decreases FPGA implementation time and costs in high-
performance computing environments. In this paper, we inves-
tigate how the OpenCL implementations performed on FPGAs
to accelerate complex algorithms that are expensive in terms of
execution time, hardware resources, energy consumption, how
they are capable of alleviating computational problems and
achieving significant other performance improvements under the
areas of bioinformatics, molecular dynamics, machine learning,
deep learning, and other computationally intensive applications.

I. INTRODUCTION

This modern era would be most affected by High-
Performance Computing (HPC) [1], which focuses on the
latest technologies to satisfy the never-ending demand for
higher performance and power consumption. This has led the
HPC world to procure specialized accelerators in the last few
years. The most common accelerator to be used for HPC
applications has so far been GPUs.

The Energy consumption of GPUs is usually high and it can
be up to 300 watts [1], and advances in GPU power quality
are approaching their limits. The key restrictions in the design
and usage of large HPC machines are power consumption and
reliability, and certain power and cooling limitations are placed
on the usability of GPUs in large supercomputers [2]. One of
the accelerators that have appeared recently as more power-
efficient alternatives to GPUs is FPGAs.

Traditionally, FPGA programs are developed using Hard-
ware Description Languages (HDL), built on a very different
programming paradigm compared to traditional software pro-
gramming languages such as C and Fortran. This problem has
always been a huge barrier to the acceptance of FPGAs by
software programmers until High-Level Synthesis (HLS) [1]
tools are built to make FPGAs available for them to define
their FPGA architecture in software programming languages.

Since the advent of HLS, many such tools have been
developed and adapted to different areas where performance
improvement and energy efficiency are expected. Sudden
improvements in the HLS environment also have arisen, with
official HLS tools being directly produced and financed by
FPGA suppliers, leading FPGAs to be more commonly em-
braced by software programmers. OpenCL is one such open-
source and royalty-free framework [1].

The remaining sections discuss the background of HPC
with the advent of high-level programming of FPGAs using
OpenCL. Also, we present how different algorithms related
to several areas of applications have been accelerated using
FPGAs and OpenCL. Finally, we demonstrate a comparison
for each chosen algorithms with their related work.

II. BACKGROUND

A. High-Performance Computing (HPC)

Most of the modern world applications are based on
computation-intensive algorithms. These algorithms are de-
ployed in different fields such as biotechnology, image pro-
cessing, machine learning, molecular dynamics, multimedia,
wireless communication, digital signal processing and many
more. The primary objective of optimizing computation-
intensive algorithms is to reduce the time it takes to complete
the computation. This problem aggravates for multidimen-
sional optimization where the search space increases exponen-
tially. And it is also called as “the curse of dimensionality” [3].
In the following paragraphs, we review some of the challenges
of deploying these algorithms.

In biotechnology high throughput of biological data sets
are generated. These data sets are complex and have large
dimensions which lead to the requirement of higher com-
putational power. Microarray is the fundamental instrument
in modern cancer research [4] but, the analysis of microar-
rays is computationally expensive. For example, the K-means
clustering algorithm, which is used in microarray analysis is
an iterative algorithm requiring long computational time in
general-purpose processors.

Image processing and computer vision are natural applica-
tions for HPC. Therefore, it is a well-researched area of fine-
tuning vision-related algorithms to run on accelerators like
FPGAs. The performance bottleneck comes when the image
size gets higher with the resolution. The example present in
[5] illustrates that at least 66 million operations per second are
required to process a standard 720p video stream at 24 frames
per second which not even full HD.

In the field of Digital signal processing (DSP), other than
computational speed, it is crucial to satisfy higher demand
of inputs and outputs imposed by the DSP system [6]. Most
of the DSP systems limited by the multiplication operation.
Therefore, the rate of multiplication by the system has to
maximize. It can achieve by implementing multiplier as a fully
parallel array multiplier or a fully bit-serial multiplier.

The most common approach to achieve better performance
is by assigning the computationally intensive task to hard-
ware and exploiting the parallelism in the algorithm [7].
Field Programmable Gate Arrays (FPGAs) have proved an
effective platform for the implementation of these algorithms.
FPGAs are in-between general-purpose processors and ASICs
(application-specific ICs) on the spectrum of processing ele-
ments [8].

B. High-Level Synthesis

Nowadays, for many high-performance applications like
medical imaging [9], molecular dynamics [10], Field Pro-
grammable Gate Array (FPGA) devices have become a so-
lution of choice.

Historically, hardware developers used hardware description
languages (HDL), programming environments like Verilog and
VHDL to program hardware at register transfer level (RTL)
[11]. When the application gets large, this approach can be
complex and frustrating even with a proper structure of an im-
plementation. The time to design, verify, and optimize (time-
to-market) an application using RTL is significant and requires
previous experience in hardware design, which implies in-
creased development cost. In the field of bio-informatics, the
algorithms evolve rapidly and thus rewriting those changes in
HDL is not easy.

This forced developers to come up with high-level synthesis
(HLS) tools like Intel OpenCL (Open Computing Language)
HLS and Xilinx Vivado HLS [12]. These tools provide the
ability to write applications in high-level programming lan-
guages such as C/C++ and SystemC and then generate the
RTL design of the program to support hardware like FPGAs.
HLS reduces the time-to-market and increases the productivity

of the developers by taking the overhead of deciding microar-
chitectural detail of the FPGA design.

C. Intel FPGA SDK for OpenCL
In [13], it has been shown that the OpenCL computing

paradigm is a viable design approach for high-performance
applications on FPGAs, and it is a framework for parallel
programming and includes a language, API, libraries, and a
runtime system to support software development. OpenCL is
developed to allow parallel computation to accelerate, address-
ing a wide range of platforms [14]. The programs written in
OpenCL can then be converted to RTL designs to support a
wide variety of platforms.

Moreover, debugging and verification of hardware designs
becomes easier relative to the developments in the RTL level
because of the C-level simulation of FPGA designs. However,
one downside of using HLS for FPGA programming is the lack
of analysis tools available, unlike CPU or GPU programming
where there are tools such as VTune and NSight for analyzing
purposes. Therefore, it is hard to identify the cause of the
bottleneck or performance problem at the hardware level of
FPGAs.

OpenCL platform model[1], an abstract hardware model for
devices (Figure 1). One platform has a Host and one or more
Devices connected to the host. Each Device may have multiple
compute units with multiple processing elements(PEs).

Fig. 1. OpenCL Platform Model

An application with OpenCL consists of two parts: the host
and kernel. The host program is used to program the CPU
while the kernel is responsible for the computation of FPGA.

The host program performs the following tasks,
• Obtain an OpenCL platform and devices.
• Create a context and a command queue.
• Program the FPGA.
• Allocate memory.
• Transfer the input data from the host to the device.
• Execute the kernel.
• Transfer the output results from the device to the host.
• Release the allocated memory.
The execution model (Figure 2) shows the communication

mechanism between the host and devices in the context

environment. The host submits work to devices and manages
the workload in the context using the OpenCL API platform
layer. The command queue is the communication media which
the host query the commands such as read, write, and execute.

Fig. 2. OpenCL Execution Model

OpenCL for FPGA uses two types of kernels, namely
‘Single work item’ kernels and ‘NDRange kernels’[1] (Figure
3). In a single work item kernel, there is only one work item
while NDRange kernel has multiple work items. The Single
work item kernel shares data among multiple loop-iterations
by using a private memory while NDRange kernels share data
among multiple work-items by using local memory.

Fig. 3. OpenCL Kernel Programming Model

In[1], it is emphasized loop unrolling, optimizing floating-
point operations, optimizing fixed-point operations, optimizing
vector operations as common optimization techniques for both
single work-item kernels and NDRange kernels.

The memory hierarchy of OpenCL is shown in Figure 4.
The host memory is accessible only to the host. The global
memory is accessible to both the host and the device. Constant
memory is read-only and only accessible to the device. Each
work group has a local memory shared by each work item and
a work item has its own private memory.

Figure 5 illustrates the schematic diagram of the Intel FPGA
SDK for the OpenCL programming model.

Fig. 4. OpenCL Memory Model

III. RELATED WORK

A. Smith-Waterman Algorithm on FPGA using OpenCL

Smith-Waterman (SW) [16] algorithm is a widely used
pairwise sequence alignment algorithm that finds the best pos-
sible aligned subsegment in a pair of sequences. Accelerating
SW is a great challenge in the field of high-performance
computation. Therefore, FPGA implementation of SW is a
well-researched area. In [17], Rucci et al. have presented SW
implementation which is capable of aligning DNA sequences
of unrestricted size for Altera Stratix V using OpenCL. In
this work, the kernel is implemented using the task parallel
programming model. The alignment matrix is divided into
verticle blocks (BW means Block Width). In a row-by-row
manner, each block is computed from top to bottom and left
to right. This approach supported by OpenCL has improved
the data locality and has reduced the memory requirement
for block execution. A large number of operations per clock
cycle is performed using loop instruction pipelining. To avoid
read-write dependencies in global memory separate buffers
are used. In their experimental result, as shown below, it
can be observed that using smaller data types for kernel
implementation has increased the performance as well as it
has reduced the resource consumption.

In Table I, Adaptive logic modules (ALMs), Registers
(Regs), RAM blocks, Digital Signal Processor Blocks (DSPs)
are used as resource measurements including different lengths
of DNA sequences.

In the above table, if we consider int bw256 and
short bw256, it is clear that int kernel has consumed nearly
0-0.28 resources than short, as well as performance increase,

Fig. 5. Schematic diagram of the Intel FPGA SDK for OpenCL programming model

Kernel int bw256 short bw256
Integer Type int (32 bits) short (16 bits)

BW 256 256
ALMs 69% 50%
Regs 12% 10%
RAM 25% 21%
DSPs 0% 0%

TABLE I: Resource usage comparison for different OpenCL
kernel implementations

is around 1.22. The latest version of this project [18] which
has finetuned previous work and here Intel Arria 10 has been
used. There is a significant performance improvement (3-4 X).

Another implementation of SW algorithm with OpenCL and
FPGA [19] is presented by Rucci et al. Their work covers
protein sequence alignment and testing with real amino acid
datasets. In this work, SW kernel has exploited inter-task
parallelism. Here, they have utilized SIMD (Single Instruc-

tion Multiple Data) vector capability available in the FPGA.
Therefore, instead of using one sequence at a time, multiple
sequences are aligned at a time. It is emphasized that the
allocation of 64-byte host side buffers has improved the data
transfer efficiency because Direct Memory Access (DMA)
takes place to and from the FPGA.

GCUPS (billion cell updates per second) is a commonly
used performance measurement in SW [19]. Performance is
evaluated considering different implementations in the degree
of data parallelism

• Scalar: Basic code without optimizations
• SIMD version: Implemented using data-level parallelism.

int4, int8, and int16 vectors are used.
From Table II the vectorized approach has performed better

than the scalar version implementation. SMID version used
int16 is nearly 11 times faster than the scalar approach.

In [20], Sirasao et al. have presented FPGA and OpenCL-
based acceleration to the SW algorithm. They have bench-
marked performance per watt on different hardware platforms
including CPUs, GPUs, and FPGAs. Also, it presents perfor-

Version Performance (GCUPS)
Scalar 3.41
int4 18
int8 23.66
int16 38.9

TABLE II: Performance comparison for different OpenCL
kernel implementations

mance tradeoff using OpenCL based programming environ-
ment.

Using Systolic array is a well-known approach for com-
puting the scoring matrix in SW algorithm [21]. In [20],
this approach has been utilized to achieve better performance.
Table III demonstrates the performance of the system with the
number of systolic cells.

#Systolic Cells GCUPS/Kernel Max-Kernels Total GCUPS
8 0.8 153 120.0

16 1.6 80 128.1
32 3.2 42 135.4
64 5.8 21 122.3
128 8.7 11 98.9

TABLE III: Theoretical GCUPS vs Kernel sizes

With the increasing number of systolic cells, GCUPS per
kernel value is also increased. In this implementation, the peak
performance is recorded when using 32 systolic arrays. There-
fore, it is highlighted that increasing single kernel performance
using many systolic cells does not increase the overall system
performance. To increase the overall system performance, it is
important to optimize data structures, memory hierarchy, and
kernels as well.

B. High-Performance Stencil Computation on FPGA using
OpenCL

Stencil computations are one of the most important types
of algorithms in High-Performance Computing (HPC) that
are widely used applications in the fields of weather, wave,
seismic, and fluid simulations, image processing, and convolu-
tional neural networks. It is a grid-based iterative computation
method with a large number of parallel operations (ex: Jacobi-
2D algorithm). The stencil computation pattern involves up-
dating elements in a multidimensional array according to a
relationship based on neighboring cells called a stencil. Here
is an example of first-order 2D and 3D star-shaped stencils.

Optimization and tuning them remains challenging for most
programmers. The arrangement of stencils exhibits the ability
to compute cells in the same iteration in parallel which is
called “cell-parallel” computation. But, cell-parallel compu-
tation is not suitable for FPGAs due to their smaller exter-
nal memory bandwidth. Stencil computations are generally
memory-bound since the grid size is usually very large and
accessed from external memory in each iteration. But this
computation pattern shows a good spatial and temporal locality
which allows for optimizations with significant reductions in
memory usage.

Fig. 6. First-order 2D and 3D stencils

In 2017, Waidyasooriya et al. propose an FPGA platform
using OpenCL for stencil computations [22] using iteration-
parallel computation where multiple iterations are processed
in parallel. With that, they propose an optimization method-
ology to find the optimal architecture for a given application
[22]. They have achieved higher processing speed relative to
multicore CPU and GPU implementations and more than 60%
of the peak performance given by FPGA.

Moreover, pipelining is used to achieve parallelism since
the usual synchronization mechanism using barriers costs a lot
of hardware and decrease the performance. They manipulate
AOC (Altera Offline Compiler) to analyze loops and automat-
ically generate pipeline stages. Separate hardware is created
by AOC for each conditional branch and such hardware for
each operation helps to run them parallelly.

They have evaluated on two FPGA boards, three GPUs, and
two CPUs with the stencil computation architecture using the
fastest implementation out of both temporal blocking and non-
temporal blocking methods. These results are shown in Table
IV.

In [23], Wang et al. used a similar approach to bridge
and enable data sharing between neighboring tiles through
using pipes solving the redundant computation and unbalanced
workload problems. They proposed a new heterogeneous ar-
chitecture design for stencil computations to improve perfor-
mance with saved FPGA resources. Further, they developed
a performance model to determine optimal stencil accelerator
design parameters and proposed a framework to automatically
optimize, synthesize stencil computations onto FPGAs. They
achieved a 1.65X performance increment compared to state-
of-the-art with fewer hardware resources.

For the validation (Table V) of the optimization framework,
they used the Alpha Data ADM-PCIE-7V3 board with a Xilinx
Virtex-7 FPGA and 16GB device memory connected to a
host via a PCI-e 3.0 X8 interface. They used Xilinx SDAc-
cel 2016.2 as the OpenCL toolchain to synthesize OpenCL
kernels onto FPGA. OpenCL based stencil benchmarks from
Polybench, Rodnia, and Parboil benchmark suites were used.
Overall, the average performance speedup for the proposed
Heterogeneous design 1.65X. Also, for Jacobi-2D, their de-
signs eliminate 17% of redundant computation and 6% of
memory transfer time of the overall execution time in the

FPGA GPU Multicore CPU
DE5 GTX960 i7-4960x

Specifications Number of Cores - 1024 6
Core Clock Freq(MHz) ≈270 1127 3600
Memory Bandwidth(GB/s) 25.6 112 51.2
Peak Performance(Gflop/s)) 196 2308.1 345.6

Processing Time(s) Laplace Equation 45.3 111.7 260.2
2-D 5-Point Jacobi 139.2 113.0 281.5
2-D 9-Point Jacobi 259.8 153.1 419.9
2-D FDTD 20.5 41.3 290.7

TABLE IV: Performance comparison between FPGA, GPU and CPU

baseline design. 9% of the waiting time of the synchronization
barrier was eliminated because of the workload balancing
technique using pipes.

Benchmark Optimization Pref.

Jacobi-1D Baseline 1
Heterogeneous 1.19

Jacobi-2D Baseline 1
Heterogeneous 1.58

Jacobi-3D Baseline 1
Heterogeneous 2.05

HotSpot-2D Baseline 1
Heterogeneous 1.35

HotSpot-3D Baseline 1
Heterogeneous 1.97

FDTD-2D Baseline 1
Heterogeneous 1.48

FDTD-3D Baseline 1
Heterogeneous 1.90

TABLE V: Experimental results of stencil benchmark suite

In [24], Jia et al. have Optimized 1D convolution, 2D
convolution, and 2D Jacobi iteration kernels for both Single-
Task and NDRange modes. They were able to gain 7.1X and
3.5X speedup factor for the Sobel and Time-domain FIR filters
than Altera design examples.

The evaluation (Figure 7) of their implementations was done
on a Terasic’s DE5-NET board, which includes 2-bank 4GB
DDR3 device memory and an Altera Stratix V GX FPGA. The
Altera OpenCL SDK v16.0 is used to compile the OpenCL
code for FPGAs.

C. K-Nearest Neighbor algorithm (KNN) on FPGA using
OpenCL

K-Nearest Neighbor Algorithm(KNN) is one of the most
popular machine learning algorithms [25] and it is widely used
in pattern recognition. Due to high computational complexity
for large datasets, the KNN algorithm has become popular in
the field of high-performance computing.

In [26], Pu et al. have proposed a new solution to speed up
the KNN algorithm on FPGA based heterogeneous computing
system with OpenCL. They have introduced a specific bubble
sorting algorithm based on FPGA’s parallel pipeline structure

to optimize the KNN algorithm. In this implementation, they
have used two kernels namely ‘Distance calculation’ kernel
and ‘Distance Sorting’ kernel.

The distance calculation kernel is parallelized based on data
parallelism. Using this approach, they have achieved maxi-
mum concurrency of distance calculation for each work item.
Moreover, this kernel is contained an internal loop that has
been unrolled eight times. Loop unrolling used less memory
than a full replication and also it increases the throughput.
The Distance sorting kernel has vectorized twice maximum
resource utilization on FPGA. Vectorization has been limited
to two because the bandwidth of the global memory access is
limited.

Table VI illustrates performance for each kernel on CPU,
GPU, and FPGA. The CPU is an Intel Core i7-3770K running
at 3.5GHz. The GPU is an AMD Radeon HD7950 with 28
compute units and a maximum working frequency 900MHz.
The FPGA board is a Terasic DE4 with a Stratix IV 4SGX530.

Platform CPU GPU FPGA
Feature Size/nm 22 28 40

Runtime/ms 10211.05 24.85 69.12
Objects/s 1.96 804.96 289.34
Speedup / 410 148
Power/W 130 200 24
Objects/J 0.015 4.024 12.056

EER / 268 804

TABLE VI: Performance comparison between CPU, GPU and
FPGA

In this test 20 query objects are used. The GPU accelerated
KNN algorithm by 410 times the speed of the 4-threads CPU
implementation, while FPGA achieved 148 times. Though, the
computation speed is fast in GPU, if performance averaged to
Joule, FPGA becomes the best.

When comparing the power consumption CPU implemen-
tation could merely classify 0.015 query objects per Joule
and GPU achieved 4.024, while FPGA 12.056. The energy-
efficient ratio (EER) in FPGA is 3 times better than the GPU.

Two different implementations of the energy-efficient ap-
proach for the KNN algorithm is presented [27] by Muslim et
al. Furthermore, they have compared the performance between
GPU and FPGA implementations of the same algorithm.

Fig. 7. Speedups and energy consumption of 1D, 2D Conv kernels

In the first approach, both sorting and nearest neighbor
identification performed by the host. It uses only global
memory and because of independent data usage algorithm
extremely parallelizable.

In the second approach, they have implemented two kernels
to calculate distances and to find k-smallest distances and
return their indices at the end of execution. Moreover, in this
implementation, they have utilized a memory optimization
technique offered by SDAccel. SDAccel is a Xilinx devel-
opment environment for synthesizing OpenCL kernels to be
executed on Xilinx FPGA devices [28].

The experiment set up includes three hardware platforms.
Device 1: NVIDIA GeForce GTX960 GPU with 1024 cores
and a maximum operating frequency of 1178MHz. The device
has about 2GB GDDR5 of global memory, with 112GB/s of
memory bandwidth. Device 2: NVIDIA Quadro K4200 GPU
with 1344 CUDA cores and a maximum clock frequency
of 784MHz. The device has about 4GB of GDDR5 global
memory, with 172.8GB/s of memory bandwidth. Device 3:
Alpha data ADM-PCIE-7V3 FPGA board with a Virtex-7
690t. The global memory consists of two DDR3 memories
with 21.3GB/s of bandwidth. K value is set to 5 and 300000
number of data points used in the test. Table VII shows the
performance of the first approach.

Parameters/Devices FPGA GTX960 K4200
Device Time/ms) 1.24 0.04 0.05

Sort Time(Host)/ms 4 3 3
Total Execution Time/ms 5.24 3.04 3.05

Power(Device)/W 0.422 120 108
Energy(Device)/mJ 0.523 4.4 5.6

TABLE VII: Performance analysis of implementation I

Both GPUs perform better than the FPGA because of their

higher DRAM access bandwidth. In terms of power and energy
consumption, FPGA implementation has outperformed. Since
sorting is done by the host, it has impacted the performance of
the FPGA implementation. Table VIII shows the performance
of the second approach.

Parameters/Devices FPGA GTX960 K4200
Total Execution Time/ms 1.23 930 3110

Power(Device)/W 3.136 120 108
Energy(Device)/J 0.0039 111.6 335.88

TABLE VIII: Performance analysis of implementation II

In this approach FPGA implementation is the fastest and
still, it consumes lesser power and energy. It has performed
7-times faster than the first approach. Since multiple kernels
execute sequentially on the GPUs and it shares only global
memory it has underperformed compared to FPGA which ex-
ecutes kernel parallelly. Also using SDAccel, it automatically
maps global arrays used solely to inter kernel communication
to the on-chip block RAMs.

D. Convolutional Neural Networks (CNN) on FPGA using
OpenCL

Convolutional Neural Networks have the most popular deep
learning architecture majorly in the field of computer vision.
It is adapted in many applications such as image classification,
facial detection, video analysis, and speech recognition. Since
they consist of multiple computationally intensive convolu-
tions (to extract features from the input data) and fully-
connected layers (all the input features are connected to all
of the output features through synaptic weights), CNNs are
usually accelerated by GUPs with high power consumption.
But it is challenging to apply them for real-time applications
with the requirement of low power consumption. Recent

studies on accelerating CNNs on FPGAs especially with high-
level synthesis have shown the advantage of reconfigurability
and energy efficiency and fast turn-around-time over GPUs.

In [29], Suda et al. proposed a systematic design space
exploration methodology to maximize the throughput of an
OpenCL based FPGA accelerator for a given on-chip mem-
ory, registers, computational resources, and external memory
bandwidth. They implemented a CNN with fixed-point oper-
ations on FPGA using OpenCL and identified critical design
variables that affect the throughput and execution times were
modeled and validated as a function of those variables. They
proposed and demonstrated a systematic way to minimize the
total execution time of large scale CNNs: AlexNet [30] and
VGG [31] on FPGAs.

Conventional CNN models are trained using CPUs and
GPUs and it is difficult to implement them on an embedded
platform since they consume a significant amount of storage,
external memory bandwidth. In their research, they state the
reduction of data precision of the weight/data can reduce the
storage requirement as well as the energy for memory transfer
without any impact on the accuracy. Figrure 8 depicts the
accuracy variation of AlexNet and VGG CNNs with precision
of convolution weights.

Fig. 8. AlexNet and VGG CNN accuracy variation with precision of
convolution weights

The validation (Table IX) of the proposed optimization
framework was done by accelerating AlexNet and VGG CNN
models on two Altera Stratix-V based boards using OpenCL
with fixed-point operations using an 8-bit for convolution.

In [32], Zhang et al. propose an analytical performance
model to perform in-depth, quantitative analysis on resource
requirements and performance of CNN classifier kernels and
available resources on modern FPGAs. Further, they propose a
new kernel design to address the key performance bottleneck
of chip memory bandwidth that was identified by applying the

FPGA Classification Time/Image(ms) Throughput(GOPS)

AlexNet
P395-D8 20.01 72.4
DE5-Net 45.7 31.8

CPU 191.9 7.6

AlexNet
P395-D8 262.9 117.8
DE5-Net 651.2 47.5

CPU 1437.2 21.5

TABLE IX: Classification time/image and overall throughput

model to analyze VGG CNN to optimally balance between
computation, on-chip and off-chip memory access.

They have verified the effectiveness of the proposed model
and were able to achieve the highest performance, energy
efficiency, and performance density relative to state-of-art
OpenCL FPGA CNN implementations.

In their proposed kernel design, they propose a novel 2D
interaction between PEs and local memory (Figure 9, 10) using
multicast connections between PEs and local memory instead
of conventional unicast connections that allows re-usage of
the data by sharing. Moreover, the work-items are always
scheduled along the lower dimension by the current OpenCL
dispatcher or 1D interconnections between PEs and local
memory. To support the above-mentioned 2D interaction, they
have proposed to dispatch work-items in a two-dimensional
manner (Figure 11). Also, they have designed a line buffer
between local and external memory to flatten and rearrange
data to improve the re-usage of on-chip data. Further, the ping-
pong mechanism has been used to fill the line buffer as a
remedy for the external memory access latency.

Fig. 9. Proposed two-dimensional PE-to-local memory interconnection

For the evaluation (Table X), they have used an Altera
Arria10 FPGA development board which consists of Arria10
GX1150 FPGA and a 1GB DDR4 SDRAM module with
12GB/s bandwidth with OpenCL SDK for FPGA and Quartus
Pro 16.

In [33], Wang et al. introduced and demonstrated PipeCNN
which is an efficient FPGA accelerator that is open for
researchers to be implemented on a variety of FPGA platforms
with reconfigurable performance and cost. It includes a set
on OpenCL kernels namely Convolutional kernel (Figure 12),
Data mover kernel (Figure 13), and other kernels integrated
using Altera’s OpenCL extension channels.

Proposed Baseline Speedup
Layer Number of Operations(GOPs) Duration(ms) Perf. (GOPs/s) Duration(ms) Perf. (GOPs/s)

CONV1 3.87 3.5 1098.04 21.3 181.6 6.03X
CONV2 5.55 4.4 1232.04 26.8 207.11 5.95x
CONV3 9.25 6.8 1329.57 41.4 223.35 5.94x
CONV4 9.25 7.4 1347.77 45.0 205.25 6.56x
CONV5 2.31 1.8 1223.94 10.9 210.73 5.82x

CONV TOTAL 30.69 23.9 1284.94 145.5 207.7 6.18x
FC6 0.029 4.1 7.25 4.8 6.09 1.19x
FC7 0.034 5.2 6.58 6.2 5.52 1.19x
FC8 0.0082 1.8 4.50 2.1 3.78 1.19x

FC TOTAL 0.073 11.1 6.6 13.2 5.52 1.19x
TOTAL 30.76 35.5 866 158.8 196 4.41x

TABLE X: Experiment results of CNN accelerator based on VGG

Fig. 10. BRAM usage for (a) traditional one-dimensional and (b) proposed
two-dimensional interconnection between PEs to local memory when varying
the number of PEs using Arria10 AX1150 FPGA

Fig. 11. Conceptual diagram illustrating (a) traditional one-dimensional
dispatcher and (b) proposed two-dimensional dispatcher

Throughput optimization is done by data vectorization and
parallels CUs. Optimizations of bandwidth are achieved by
introducing a sliding-window data buffering scheme (Figure
14) and fixed-point arithmetics are used instead of floating-
point to reduce memory bandwidth requirements and hardware
costs.

The demonstration and evaluation (Table XI) were done on
three FPGAs consisting of Cyclone-V SEA5 SoC, Stratix-V
GXA7, and Arria-10 AX115 using OpenCL SDK 16.1, and
processing speed and power consumption were measured for
CNN-based image classification (AlexNet with 8 layers and

Fig. 12. The hardware architecture of the convolution kernel

Fig. 13. Data and work-item mapping scheme of the data mover kernels.

VGG with 16 layers). The host was powered with Intel i5-
4690K CPU and 64GB memories.

E. Molecular dynamics applications on FPGA using OpenCL

Molecular dynamic (MD) is the area of computer simula-
tions to analyze the physical behavior of atoms and molecules

Fig. 14. Sliding-window-based data buffering scheme

Platform FPGA Resource Resource Execution Time(ms) Frequency(Hz) Board
Type Capacity Consumed AlexNet VGG-16 Power(W)

DE1-soc Cyclone-V 85K LEs 45K LEs 140 1928 122 2.1
SEA5 87 DSPs 68 DSPs

DE5-net Stratix-V 622K LEs 122K LEs 15 254 198 27
GXA7 256 DSPs 247 DSPs

DE5a-net Arria-10 1150K LEs 322K LEs 5 110 218 26
GX1150 1518 DSPs 683 DSPs

TABLE XI: Summary of the measured performance, cost and
power consumption on different platforms

in space. The simulation is driven by the numerical results
given by relatively applying classical Newtonian dynamic
equations to atoms or molecules. These equations are nu-
merically solved for every particle in the system within an
instance of time making MD computationally costly. Using
modern concepts like parallelization MD has gained signif-
icant performance improvements in recent years. But, still,
these exhaustive simulations have become a bottleneck in the
majority of biological processes. MD has a number of ap-
plications in thermodynamic, bioinformatics, material science,
chemistry, simulations of protein shapes, and refinement of
X-ray structures. Implementations of MD using FPGAs and
OpenCL takes considerable design time and skills. Interactions
of atoms mainly fall into two categories called Bonded and
Non-bonded interaction. The former ones are only affected by
few neighboring atoms since they are linked by covalent bonds
and the latter ones have interactions with many neighbors
making MD computationally intensive.

In [34], they propose an OpenCL based heterogeneous
computing system with an FPGA accelerator. They have
implemented the most time consuming non-bonded interaction
computations using the FPGA accelerator. Since the atoms
move with time, the number of atoms in a cell is not a constant
making the loop boundaries data-dependent and not suitable
for OpenCL implementation. To get around this issue, they
introduced a pipelined architecture replacing nested loops.

The evaluation (Table XII, XIII) of the implementation
is done using DE5a-NET Arria 10 FPGA Development Kit
which contains an Arria 10 FPGA and Quartus 16.1 with
OpenCL SDK. The heterogeneous system consists of an
Intel Xeon E5 CPU with 64GB RAM with CentOS 7. They
simulated a box of 22,795 atoms in a box in a dimension of
61.24 x 10-10 m3.

Implementation Processing Time(s)
CPU 0.68
FPGA(using the same CPU code) 88.03
FPGA(using the proposed method) 0.17

TABLE XII: Comparison of the non-bonded force computation
time on CPU and FPGA

Task Processing Time(s)
Non-bonded Force Computation in FPGA 0.14
Bounded Force Computation in CPU 0.14
Data Trasfer: CPU to FPGA 0.25
Data Trasfer: FPGA to CPU 0.08
Total Processing Time(parallel processing on CPU and FPGA) 0.47
Total Processing Time in Conventional Method(using CPU only) 0.82

TABLE XIII: Processing time for different tasks in the het-
erogeneous system per one ite ration

In [35], they tried to experiment and determine whether
the OpenCL implementation is competitive with an HDL
implementation of MD using several designs with pipelines:
single-level implementations in Verilog and OpenCL, a two-
level Verilog implementation with the optimized arbiter and
several two-level OpenCL implementations with different ar-
bitration and hand-shaking mechanisms including one with an
embedded Verilog module.

They use a method of dividing the cell into 12 slices to
remedy the load imbalance (unlikely to process a similar num-
ber of particles within a cut-off by each filter kernel). Filter
kernels take pairs of particles and output details of ones within
the cut-off radius using channels. They propose seven different
designs making a decision when data is available in multiple
channels named No filter, Round robin, Explicit handshaking,
Explicit handshaking with custom logic, Distributed control,
Verilog without, and with filtering.

The evaluation is done on a Nallatech 385A FPGA card,
which hosts an Altera Arria 10 FPGA and has an 8GB DDR3
on-card memory, and Altera OpenCL SDK 16.0 support.
The summary of results obtained by performing different
experiments are shown in Table XIV

Design LEs(%) FFs(%) BRAMs(%) DSPs(%) Frq(MHz) Time(ms)
1 OpenCL 9 15 11 89 151.3 3.9
No Filter 1 1 3 1

2 OpenCL 13 21 27 9 246.1 32.0
Round Robin 5 7 18 5

3 OpenCL 13 20 27 9 245.2 22.1
Standard 5 6 17 5

4 OpenCL 19 31 43 9 241.1 17.0
Hybrid 10 17 33 5

5 OpenCL 14 24 29 8 256.5 3.1
Distrib. 5 9 17 4

6 Verilog 1 1 2 2 194.8 3.0
No Filter
5 Verilog 1 1 2 6 195.2 0.5
Standard

TABLE XIV: Collected results

IV. RELATED WORK RESULTS SUMMARY

Following are the key takeaway points in terms of optimiz-
ing FPGA based accelerations using OpenCL.

• Larger pipelines lead to better performance but at the cost
of higher resource consumption.

• The use of smaller data types for kernel code results
in better performance and less resource consumption on
FPGAs.

• Data level parallelism is important to achieve successful
performance rates at the expense of a moderate increase
in resource usage.

• When considering DNA sequencing algorithms, larger
workloads benefit all kernels regardless of sequence sim-
ilarity.

• When considering power efficiency, most of the FPGA
accelerators are better than GPU based implementations.

• The exploitation of OpenCL memory hierarchy, such as
the private memory offers considerable benefits, although
constant memory usage hardly improves the performance.

• Data transfer time between CPU and FPGA is a perfor-
mance bottleneck. This can be eliminated using unified
memory space for CPU and FPGA.

• Since OpenCL allows multiple devices exploitation, the
workload can be distributed among multiple FPGAs to
achieve better performance.

• Unlike the existing HDL-based alternatives, OpenCL
paradigm facilitates portability.

Following tables show a summary of results obtained by
different implementations of SW, KNN and CNN algorithms
based on common criteria that are available on research articles
we reviewed.

Research Rucci et al. Sirasao et al. Benkrid et al.
FPGA Altera Stratix V Xilinx Virtex-7 690T XILINX XC2V6000-4
PEs - 32 100

GCUPS 37.64–113.78 77.00 6.67
Watts(W) 25 28.00 -

GCUPS/Watts 1.51–0.13 2.8 -

TABLE XV: Performance comparison between different SW
implementations

Research Muslim et al. (impmentation I) Muslim et al. (impmentation II)
FPGA ADM-PCIE-7V3 FPGA ADM-PCIE-7V3 FPGA

Total Execution Time/ms 5.24 1.23
Power(Device)/W 0.422 3.136

Energy(Device)/mJ 0.523 3.9

TABLE XVI: Performance comparison between different
KNN implementations

Research Suda et al. Zhang et al.
FPGA Stratix-V GSD8 Arria 10 GX1150

Frequency(MHz) 120 370 385
CNN Size(GOP) 30.9 30.76

Precision Fixed Float Fixed
Throughput 136.5 866 1790

TABLE XVII: Performance comparison between implementa-
tions of VGG CNN

* GOPS - Giga [billion] Operations Per Second

V. SUMMARY

This paper reviewed previous work done to optimize high-
performance computing applications using OpenCL on FPGAs
to achieve better performance relative to state-of-art imple-
mentations while minimizing energy consumption. CPU/GPU
implementations usually show better performance due to their
novel technology usage. But according to the literature, they
consume a more power relative to FPGAs making them not ap-
plicable for portable embedded systems. Several areas includ-
ing bioinformatics, molecular dynamics, machine learning,
deep learning, and other computationally intensive applications
such as stencil computations are selected for review. Under
bioinformatics, we selected one of the widely used Smith-
Waterman algorithms and reviewed different approaches and
their impact. Molecular dynamics is an area where the physical
behavior of atoms or molecules is analyzed using simulations.
Each iteration of such simulation has to calculate Newtonian
equations per huge number of the particle being real-time at
the same time. We reviewed what researchers have introduced
as alternative methods to overcome the overhead of traditional
loops using the flexibility of OpenCL on FPGAs. Machine
learning is the most popular discipline in Artificial Intelligence
and one of the computationally intensive algorithms in Ma-
chine Learning is Nearest Neighbor where all the vertices have
to be considered in each iteration. It has many applications
such as data clustering and pattern recognition. Convolutional
Neural Networks has a major role in computer vision and voice
recognition. Due to the huge number of inputs per convolution
layer, the number of convolution layers, and floating-point
storage and calculations CNN is challenging to run on an
embedded device. Several researchers propose solutions such
as fixed-point numbers to overcome those problems. Stencil
computations are a grid-based iterative computational method
with a large number of parallel operations. Researchers have
taken the advantage of the arrangement of stencils to achieve
better performance.

REFERENCES

[1] H. M. Waidyasooriya, M. Hariyama, and K. Uchiyama, Design of
FPGA-based computing systems with openCL. 2017.

[2] A.V.D Ploeg, Why use an FPGA instead of a CPU or GPU, Medium,
August 14, 2018. Accessed on: November 11, 2020. [Online]. Avail-
able: https://blog.esciencecenter.nl/why-use-an-fpga-instead-of-a-cpu-or-
gpu-b234cd4f309c

[3] M. Psarakis, A. Dounis, A. Almabrok, S. Stavrinidis, and G. Gkekas,
“An FPGA-Based Accelerated Optimization Algorithm for Real-Time
Applications,” J. Signal Process. Syst., vol. 92, no. 10, pp. 1155–1176,
2020, doi: 10.1007/s11265-020-01522-5.

[4] H. M. Hussain, K. Benkrid, and H. Seker, “The role of FPGAs as high
performance computing solution to bioinformatics and computational
biology data,” Int. Conf. Appl. Informatics Heal. Life Sci., no. November
2014, pp. 102–105, 2013, doi: 10.13140/2.1.3830.7529.

[5] M. I. Alali, K. M. Mhaidat, and I. A. Aljarrah, “Implementing im-
age processing algorithms in FPGA hardware,” 2013 IEEE Jordan
Conf. Appl. Electr. Eng. Comput. Technol. AEECT 2013, 2013, doi:
10.1109/AEECT.2013.6716446.

[6] R. J. Petersen and B. L. Hutchings, “An assessment of the suitability
of FPGA-based systems for use in digital signal processing,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 975, pp. 293–302, 1995, doi: 10.1007/3-
540-60294-1 123.

[7] S. Qasim, S. Abbasi, and A. Bandar, “Advanced FPGA Architectures for
Efficient Implementation of Computation Intensive Algorithms: A State-
of-the-Art Review,” MASAUM J. Comput., vol. 1, no. 2, pp. 300–303,
2009.

[8] K. Nagarajan, B. Holland, A. D. George, K. C. Slatton, and H. Lam,
“Accelerating machine-learning algorithms on FPGAs using pattern-
based decomposition,” J. Signal Process. Syst., vol. 62, no. 1, pp. 43–63,
2011, doi: 10.1007/s11265-008-0337-9.

[9] M. Leeser, S. Coric, E. Miller, H. Yu, and M. Trepanier, “Parallel-
beam backprojection: An FPGA implementation optimized for medical
imaging,” J. VLSI Signal Process. Syst. Signal Image. Video Technol.,
vol. 39, no. 3, pp. 295–311, 2005, doi: 10.1007/s11265-005-4846-5.

[10] H. Guo, L. Su, Y. Wang, and Z. Long, “FPGA-accelerated molecular
dynamics simulations system,” Int. Conf. Scalable Comput. Commun.
- 8th Int. Conf. Embed. Comput. ScalCom-EmbeddedCom 2009, pp.
360–365, 2009, doi: 10.1109/EmbeddedCom-ScalCom.2009.71.

[11] N. Street, “VERILOG HDL based FPGA design Gary Gannot and
Michiel Ligthart Exemplar Logic , Inc .,” 1994.

[12] C. Rust, F. Stappert, R. Künnemeyer, R. Kuennemeyer, J. Cong, and B.
Liu, “From Timed Petri Nets to to Interrupt-Driven Embedded Control
Software,” . . . -Aided Des. . . . , vol. 30, no. 4, pp. 473–491, 2003.

[13] T. S. Czajkowski et al., “From OpenCL to high-performance hardware
on FPGAs,” Proc. - 22nd Int. Conf. F. Program. Log. Appl. FPL 2012,
no. March, pp. 531–534, 2012, doi: 10.1109/FPL.2012.6339272.

[14] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “OpenCL-
based FPGA-platform for stencil computation and its optimization
methodology,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5, pp.
1390–1402, 2017, doi: 10.1109/TPDS.2016.2614981.

[15] B. P. Guide, “Intel® FPGA SDK for OpenCLTM,” pp. 1–122, 2016.
[16] M. J. Reigosa et al., “Comparison of physiological effects of allelo-

chemicals and commercial herbicides,” Allelopath. J., vol. 8, no. 2, pp.
211–220, 2001.

[17] E. Rucci, C. Garcia, G. Botella, A. De Giusti, M. Naiouf, and M.
Prieto-Matias, “Accelerating smith-waterman alignment of long DNA
sequences with OpenCL on FPGA,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2017, vol. 10209 LNCS, pp. 500–511,
doi: 10.1007/978-3-319-56154-7 45.

[18] E. Rucci, C. Garcia, G. Botella, A. De Giusti, M. Naiouf, and M. Prieto-
Matias, “SWIFOLD: Smith-Waterman implementation on FPGA with
OpenCL for long DNA sequences,” BMC Syst. Biol., vol. 12, no. Suppl
5, 2018, doi: 10.1186/s12918-018-0614-6.

[19] E. Rucci, C. Garcia, G. Botella, A. De Giusti, M. Naiouf, and M. Prieto-
Matias, “Smith-Waterman Protein Search with OpenCL on an FPGA,”
Proc. - 14th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust.
2015, vol. 3, pp. 208–213, 2015, doi: 10.1109/Trustcom.2015.634.

[20] A. Sirasao, E. Delaye, R. Sunkavalli, and S. Neuendorffer, “Fpga based
opencl acceleration of genome sequencing software,” System, vol. 128,
no. 8.7, p. 11, 2015.

[21] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and effi-
cient FPGA-Based skeleton for pairwise biological sequence alignment,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 17, no. 4, pp. 561–570,
2009, doi: 10.1109/TVLSI.2008.2005314.

[22] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “OpenCL-
based FPGA-platform for stencil computation and its optimization
methodology,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5, pp.
1390–1402, May 2017, doi: 10.1109/TPDS.2016.2614981.

[23] S. Wang and Y. Liang, “A Comprehensive Framework for Synthesizing
Stencil Algorithms on FPGAs using OpenCL Model,” Proc. - Des. Au-
tom. Conf., vol. Part 12828, no. c, 2017, doi: 10.1145/3061639.3062185.

[24] Q. Jia and H. Zhou, “Tuning Stencil codes in OpenCL for FPGAs,”
Proc. 34th IEEE Int. Conf. Comput. Des. ICCD 2016, pp. 249–256,
2016, doi: 10.1109/ICCD.2016.7753287.

[25] Z. Zhang, “Introduction to machine learning: K-nearest neighbors,” Ann.
Transl. Med., vol. 4, no. 11, 2016, doi: 10.21037/atm.2016.03.37.

[26] Y. Pu, J. Peng, L. Huang, and J. Chen, “An efficient KNN algo-
rithm implemented on FPGA based heterogeneous computing system
using OpenCL,” Proc. - 2015 IEEE 23rd Annu. Int. Symp. Field-
Programmable Cust. Comput. Mach. FCCM 2015, pp. 167–170, 2015,
doi: 10.1109/FCCM.2015.7.

[27] F. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar, “Energy-
efficient FPGA Implementation of the k-Nearest Neighbors Algorithm
Using OpenCL,” Position Pap. 2016 Fed. Conf. Comput. Sci. Inf. Syst.,
vol. 9, no. October 2020, pp. 141–145, 2016, doi: 10.15439/2016f327.

[28] U. Guide, “SDAccel Development Environment,” vol. 1023, pp. 1–79,
2015.

[29] N. Suda et al., “Throughput-optimized openCL-based FPGA accelerator
for large-scale convolutional neural networks,” FPGA 2016 - Proc. 2016
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 16–25,
2016, doi: 10.1145/2847263.2847276.

[30] T. F. Gonzalez, “Handbook of approximation algorithms and metaheuris-
tics,” Handb. Approx. Algorithms Metaheuristics, pp. 1–1432, 2007, doi:
10.1201/9781420010749.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR
2015 - Conf. Track Proc., pp. 1–14, 2015.

[32] J. Zhang and J. Li, “Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,” FPGA 2017 - Proc. 2017
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 25–34,
2017, doi: 10.1145/3020078.3021698.

[33] M. Alam, P. Bethoju, and M. Song, “Study of traffic engineering ca-
pabilities of MPLS networks,” Int. Conf. Inf. Technol. Coding Comput.
ITCC, vol. 2, pp. 14–15, 2005, doi: 10.1109/itcc.2005.264.

[34] H. M. Waidyasooriya, “OpenCL-Based Implementation of an FPGA
Accelerator for Molecular Dynamics Simulation,” vol. 3, no. 2, pp.
11–23, 2017.

[35] C. Yang, J. Sheng, R. Patel, A. Sanaullah, V. Sachdeva, and M. C.
Herbordt, “OpenCL for HPC with FPGAs: Case study in molecular
electrostatics,” 2017 IEEE High Perform. Extrem. Comput. Conf. HPEC
2017, 2017, doi: 10.1109/HPEC.2017.8091078.

	Introduction
	Background
	High-Performance Computing (HPC)
	High-Level Synthesis
	Intel FPGA SDK for OpenCL

	Related Work
	Smith-Waterman Algorithm on FPGA using OpenCL
	High-Performance Stencil Computation on FPGA using OpenCL
	K-Nearest Neighbor algorithm (KNN) on FPGA using OpenCL
	Convolutional Neural Networks (CNN) on FPGA using OpenCL
	Molecular dynamics applications on FPGA using OpenCL

	Related Work Results Summary
	Summary
	References

